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Based on the work done in collaboration with M. Assaf (Jerusalem)
Reference: arXiv:0912.0157, to appear in EPL (Europhysics Letters)
@ Intro to Evolutionary game theory
e Basic notions & replicator Dynamics
e Stochastic Dynamics, Evolutionary stability & Fixation
@ Large fluctuations & WKB theory in evolutionary games
e WKB theory in anti-coordination games
o General WKB treatment & Results

e WKB calculation of the fixation probability in coordination games
e Comparison with diffusion approximations (Fokker-Planck)

@ Outlook & Conclusion
Need for an accurate theoretical approach to describe

large-fluctuation-induced phenomena (stochastic fluctuations and
nonvanishing selection), diffusion approx don’t work here
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What is Evolutionary Game Theory about?

What is Evolutionary Game Theory about? J

@ Description of complex phenomena in behavioural science and
population dynamics (e.g. in ecology, genetics, economics, ...)

@ Dynamical version of classic (rational) game theory
Some of the founders & pioneers:

@ John von Neumann & Oskar Morgenstern (1944), “Theory of
games and economic behavior”

@ John Nash (1994 Nobel prize in Economics) — Nash equilibrium
@ John Maynard Smith, “Evolution and the Theory of Games”
(1972) — Evolutionary stability
Some reference books:

@ J. Hofbauer & K. Sigmund, “Evolutionary Games and Population
Dynamics” (1998)

@ M. Nowak, “Evolutionary Dynamics” (2006)
@ J. Maynard Smith, “Evolution and the Theory of Games” (1972)
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Some Basics of Game Theory

Initially, “game theory” was a branch of social sciences and applied
maths (von Neumann & Morgenstern, 1944). Goal: find optimal
strategies (“utility function”).

Evolutionary Game Theory (EGT): different approach where utility
function (game’s payoff) is the reproductive fithess = successful
strategies spread at the expenses of the others (Maynard Smith &
Price, 1973).

New aspects and interpretations:

@ Strategies and their frequencies become population species and
their densities

© Dynamics is naturally implemented in EGT
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The Replicator Dynamics

Traditional EGT setting: large and unstructured populations with
pairwise interactions.

At mean-field level, the dynamics is described by the replicator
equations for the density x; of type i = 1,..., S in the population:

Xi = x(N; = 1),

where [1;: average payoff (here = fithess) of an individual of species i

I: mean payoff averaged over the entire population

Common choice, with a payoff matrix &: 1; = (’x); linear function
of X = (X1,..., Xj, ..., Xg), [1 = X.PX
Important case: 2 x 2 games with 2 species/strategies (A and B)

vs | A B
Ala b
Bl|lc d

Avs Agets aand B vs B gets d; Avs B gets b, while B gets ¢
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Replicator Dynamics for 2 x 2 Games

Population comprised of a density x and 1 —x of A and B, resp.
Thus, Mg=ax+b(1—x),Mg=cx+d(1—x)and M =xMag+(1—x)MNg
x = x(1-x)[(a—b—c+d)x+b—d]= J
d—b

Xt = 2 b_ciad (Interior fixed point)

@ Dominance (a—c)(d—b) <0: A

dominates over B when a> ¢ & S
. lawk-Dove / Snowdrift
b > d. B dominates over A when B—eal proe—u
c=>a &d > b Dominance | Anti-coordination
@ Coordination (bistability): When . . c-a
. Coordination Dominance
a> cand d > b, the asborbing N N

states x =0 and x = 1 are stable Bsm_ﬂm
and separated by x* (unstable)
@ Anti-coordination (coexistence):
When c>aand b>d, x* is
stable while x =0and x =1 are
unstable, hence A and B coexist
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Prisoner’s dilemma

@ Neutrality: When a=c
and b = d, there is neutral
stability for all values of x



Stochastic Dynamics & Moran Process

Evolutionary dynamics involves a finite number of discrete individuals
= stochastic rules given by the frequency-dependent Moran process

2 x 2 games: Markov birth-death process of i individuals of species A
and N — i of species B (total size N is conserved).
@ At each time step, randomly pick 2 individuals
@ 1 individual selected for reproduction and the other for death.
The offspring replaces the deceased. N remains constant
@ “Interaction” according to the payoff matrix, i.e. reproduction and
death rates depend on the individuals’ fitnesses f4 and fg.
@ Transition i — i+ 1 (birth of a A and death of a B) with rate T;,
while the transition i — i — 1 (birth of B and death of a A) occurs
with rate T;. T;* are functions of 4 and fg

®e o .| ® o T | ® O 0
—= ® @ - 09 @@

... . o — . .. -1 —

® o | T |® 00| T ® 00

i=9, N=10 i=B i=7
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The probability P;(f) of having i individuals of species A at time ¢
obeys the master equation:

@ Pi) = T Ps() 4 Ty Pra ()~ T+ T 1P

i=0 (i.e. all B's) and i = N (i.e. all A’s) are absorbing states =
ie[0,Nand Tf =T5 =0

For the frequency-dependent Moran Process (fMP):

@ Fitnesses of A and B given by f4 and fg, resp.
2 contributions: baseline (neutral) contribution + selection =
fa=1—w+wlyand fg=1—w-+ wllg.
Strength of selection measure by 0 < w < 1:
w = 0 — neutrality, w = 1 — only selection

o T =" (fa.f5)
f)

f — f;
° X" = wmmT NG A X = TR OTNG — (T

Markov chain with absorbing boundaries = unavoidable fixation,
with system ending with all A's (i= N) or all B’s (i =0) J

Stochastic fluctuations alter the predictions of the replicator equations



Evolutionary Stability & Fixation

@ Fixation: possibility for a few mutants to take over the entire

population
© There is evolutionary stability when the population B’s is proof
against invasion from mutants A’s

Starting with i mutants of type A, what is the probability ¢* of ending
with all A's (i = N)? How long does it take? Dependence on w? J

In the neutral case (w =0), ¢ =i/N =
State with all B’s evolutlonary stable if selection opposes

replacement by A mutants A, i.e. if ¢ < i/N
2 x 2 evolutionary games are formulated as 1D single-step
birth-death processes and thus (formally) solvable:
[EDY R PRV - _
° ¢f'= # withy =T /T = x7 /"
° Uncondmonal f|xat|on time:
:*712 Hm 1Ym+zk Z/ 1 7—+ Hm 141 Ym

with T = ¢1 Zk:1 Z/:1 fnmzlvq Ym
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Large Fluctuations & WKB-based Theory

@ Exact expressions: difficult to generalise and analyse

© Common approach: Fokker-Planck approximation (FPA) — good
only for weak selection (diffusive dynamics: tractable)

© Evolutionary dynamics: generally combination of random
fluctuations and non-vanishing selection — Other approach is
needed

When there is metastability fixation is reached following an “optimal
path” obtained by a WKB theory }

@ ACG: WKB analysis = quasi-stationary distribution (QSD),
probability and mean times of fixation (MFTs)

@ CG: WKB calculation of the fixation probability
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Anti-coordination Games & WKB Theory (I)

In ACGs (c > a, b > d), after relaxation time t., the system converges
to the metastable state n. = Nx*. The latter has a very long mean
time of decay, 7, that coincides with the (unconditional) MFT

WKB treatment requires: (1) t>> f, (2) N and Nx* > 1, (3) transition
rates of order ¢(1) away from the absorbing boundaries
Idea: At time t>> t,, Pi(t) ~ mje /" for1 <i<N—1 and
Po(t)~¢(1—e /%), Pn(t) =~ (1 —¢)(1—e ")
From fluxes of probability into the absorbing states:

@ Unconditional MFT: © = [T, 7ty + T, in_1]"

@ Conditional MFTs: 4= [Ty ,my_4]~" and 78 = [T,7 4]~

e Fixation probability: 8 =1—-¢A=¢ =T, 7yt
This requires the full QSD #;. Assuming #;/7 negligible, the
quasi-stationary master equation (QSME)

0=T'm 1+ T,

i — [T+ T ]

is solved using the WKB approach



Anti-coordination Games & WKB Theory (II)

To solve the QSME T, m;_1 + T mi 1 — [T, + T; ] = 0 away from

the boundaries, one uses the WKB Ansatz (x = i/N):

7(X) = o7 e NSK)=$1(0)

S(x) is the “action” and S;(x) is the amplitude, while <7 is a constant.
With this ansatz and .7:(x) = T;*, one obtains to order ¢(N~1)

w00 {700 [ (1- 8"+ 1) 1]

+7 (x) {esl (1 ‘;T\/S"‘ /1\134) _1]
+ 1N [e*s/ﬂ_’(x) - es’ﬂ(x)} } =0.

To order (1), with the "momentum™ p(x) = dS/dx:
Hamilton-Jacobi equation, H[x, S'(x)] = 0, where the Hamiltonian is
H(x,p) = 7, (x)(e” — 1)+ T-(x)(e P~ 1)
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Anti-coordination Games & WKB Theory (lll)

To solve the QSME T;", w1 + T @iy — [T;" + T; 1w = 0 away from

the boundaries, one uses the WKB Ansatz (x = i/N):

7T(X) _ %e—NS(X)—& (x)

To order 0'(1): zero-energy trajectories of Hamiltonian H[x, S'(x)]
yields pa(x) = —In[.Z7.(x)/ 7_(x)] = “optimal path” to fixation is
S(x )=—fx|n[ﬂ+(é)/9’—(é)]d€
To order ¢(N~1): S;(x) by solving a differential equation
Constant <7 : by Gaussian normalization of the QSD =(x) about x*

@ To order &/(1 )'S( )=—J*In[Z.(§)/ T-(§)] dé
@ To order G(N—"): Sy(x) = L In[7,(x).7_(x)]

Near the boundary x = 0, expand 7. (x) ~ x.7/(0) in the QSME
= Z{(0)(i = 1)mi—1 + T(0)(i + 1)1y — i[F{(0) + 7/(0)]m; = O,

yielding m; = (R’ 1)), with Ry = .7/(0)/.7/(0).
Similarly with the boundary x =1
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Anti-coordination Games & WKB Theory (V)
WKB solution for the QSD in the bulk (for N-1/2 < x < 1 — N~1/2):

B . S"(x*) ~N[S(X)-S(x*)]
X)) = ‘Z(X)\/ 27N 7, (X) 7 (x) © ’

Near the boundaries, matching the recursive and WKB solutions
yields (with Ry = 7/ (1)/.7/(1)):

NS”(X*) 5 (x") (Ro —1) - NiS(0)-5(x)]

oo V7077 (0)
NS"(x Ri—1) st six
o ( ") 7, (7/)( ;/ ) g~ NIS(1)-S(x*)]

Thus, t=N[7'(0)m + |7, (1 )|7rN_1]_ and ¢ = N7’ (0)my T
For the fMP:

&N = [Ax+B(1 )" M&a) [Cx+ D(1 — )] M M),

withA=1-w+wa, B=1-w+wb, C=1-w+we, and
D=1-w+wd.
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@ QSD: bell-shaped function

peaked at x*. Systematic
non-Gaussian effects near the
tails, well accounted by the
WKB approach

MFTs: exponential dependence
on the population size

(Nw > 1), 7o« N/2gNE=S(),
where ¥ = min(S(0), S(1))

For “small” selection intensity,
the MFTs grow exponentially as
A ~ N1/2 gNw(a—c)?/[2(c—a+b—d)]
B ~ N1/2gNw(b—d)? /12(c—a+b-d)]

and t = 478/ (14 4 1B)

a=0.1, b=0.7
¢=0.6, d=0.2 _4
N=150, w=0.2
x#20.5 (n*=75)
-6

B
£ -8

Numerics

WKB resulf |}

Gaussian
approx.

-1

Anti-coordination Games & WKB Theory: Results (1)
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@ For Nw > 1, the MFTS
increase monotonically with
w, faster than exponentially

@ Fixation probability: When
w=0,¢"/¢5 =x/(1-x)
depends on initial fraction of
mutants. No longer the case
when w > 0 (selection):

o ac(55)

BN(%A)DN(C D)
(BA)CN(C D)

= Exponential dependence:
da/9s is exponentially
large/small when N > 1,
except for w <« 1
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Coordination Games & WKB Theory (I)

In CGs, i =0 and i = N are attractors and x* is unstable.
Starting with i A individuals, what is the probability ¢/ that
species A fixates the system?

q);“ is a cumulative distribution function obeying
Trofa+ T o2 [T+ T 10/ =0, with ¢5'=0.98=1

Convenient to work with 7, = ¢4, — ¢/ such that ¢/ =Y/ 1) ;.
When N> 1, &, = &#(x) and the latter obeys

T (X)P(x) - T (x)P(x-N"1)=0.
Eqg. solved by the WKB ansatz
P(X) = g e NS ()—1(x)

As for ACGs, this leads to . (x) = —S(x) = [*In[.7.(&)/ 7 (&)]dE
and .7 (x) = — 3 In[7_(x)/ T+ (X)]
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Coordination Games & WKB Theory (II)

One therefore obtains:

ST(x") T S(x X*
P(x) = | 27(1');\/ )l %ExgeN[ (x)=S(x")]

To leading order when N~' <« w <« 1:

0A(X) =~ | /M /X dy eNISW)-S6)]
T Jo

Criterion of evolutionary stability (of “wild species” B): ¢*(x) < x, for
Xx < 1= relevant to consider the limit x < x* with finite w

Approximation for N-1 < x < 1 (where S'(x) > 0) and Nw > 1:

. 2(Xx)
(PA(X)—W

As ¢”(x) is exponentially small, 9”(x) < x and the selection opposes
replacement of B’s by A’s = the state with all B's is always
evolutionary stable when w s finite
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Coordination Games & WKB Theory: Results (I)

@ Fixation probability: $(x) — 1 10° famiz)
when x — 1, with ¢”(x*) =1/2, N-lo¢
and is exponentially small
¢” — 0 when x — 0. “Jump” 1o
from finite to exponentially
small value of ¢ becomes

WKB theory /\

Numerics o 05 1

Small-x approximation

steeper when w increases 0 o0z 04 06 08 1
X
10° fa=12,b=01 ]
Weto
. . w=0.7 7
@ Behaviour for x < 1: When w is e o
finite, N> 1 and x < 1, the <0l /-
exponentially small value of 7 E_m
¢”(x) is approximated by / et T
A y(X) 10_12 Small-x approximation
¢7(x) ~ 001 o 0z 04 06 08 1
- X
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Coordination Games & WKB Theory: Results (1)

Comparison with Fokker-Planck: 10° =100
: ; R = — WKB &
Fixation probability often a=d =02 numenice
approximated using the c=0.3 I-FPE
Fokker-Planck Equation (FPE). d=3.8 4oVKB / 1LFPE resuts
This diffusion approx. yields = '
. . 1
Oip(X) = % with 95/_
W(x) = J§ eI Ore@)% gy and L N
7‘ X
Orpe(X) =2N (T%) 0 05 1
Often used within linear noise X
\}

approx., where ¢/tpg(x) = gy with 10° o e
e(FpE(X) af4 \/_VKB
2N(x —x™) (M) instead ?;8§ e

TH(X)+T- () d=3.8 WKB / I-FPE results
of Oppe(X) 107" ‘
To leading order, WKB result can o5
be rewritten as ¢A(x) ~ g}, with ;
O(x) = NIn[Z.(x)/.Z(x)] instead 10_20t " om os
of @FpE(X) 0 0.5 1
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Coordination Games & WKB Theory: Results (111

10
@ Excellent agreement -
between numerics and WKB 107 )
results for any x and w >0 e a=2.b-02 i
. . < c=0.3,d=1.8 Rex, X
@ FPE in good agreement with = | Noasoe-1ns S, v
. 15| s,
WKB and numerics when w 1077 VKB theory
IS Sma” (and/or X~ X*) 107%° [i()nél;erzﬂzggr}coil?epflg?;ﬁck approx.
@ However, exponentially large 02 04 06 08 1
. . w
deVIatlonS When w and N Numerical results / Theoretical predictions
are raised and x deviates il
from x* R KB
075 "
As O(x) — Oppg(x) ~ N(wAX)3 R
and ©(x) — Opg(X) ~ N(wAX)? 5 o
(Ax=x—x*) = 0.25 e
Exponentially large errors in o 4= 6202, c=0.3,d=0.8 ‘ .
(b]/:qPE(X) and (P(/?:PE(X) When WZZS, "1=(1)(0)(x=1150§v) 200 250 I:(::nze:l’:)PE400
w> N3 and w > N2 resp. N
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Outlook & Conclusion

Presentation of a WKB-based approach allowing to compute
large-fluctuation-induced phenomena in evolutionary processes

@ Account naturally for large fluctuations and non-Gaussian
behaviour

@ Application to a class of evolutionary games modelling:combined
effect of stochasticity and non-linearity (selection)?

@ Metastability in Anti-Coordination Games: calculation of the
QSD, ¢ and MFTs = when w > 0 and N >> 1, non-Gaussian
QSD and MFTs grow exponentially with N

@ ¢” in Coordination Games: asymptotically exact results for ¢ =
exponentially small when w > 0 and N > 1

@ Comparison with Fokker-Planck: FPE is only accurate around x*
and for vanishingly small selection strength w

@ Generalization to other rules/interactions

@ Method can be adapted to study non-exactly solvable problems
(e.g. 3 x 3 games)
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